首页 > 小学网课 > 小学数学

关于近似数的计算讨论

admin 小学数学 2021-04-23 14:11:32 小学数学探讨争鸣

 

  (1)近似数的加减
  看下面的例子,近似数0.097与近似数0.001263相加,
  
  如果两个数都是准确数,所得的和当然是0.098263.
  现在加数中有近似数,这样求得的和就不合理.
  这是因为,0.097本身是近似数,精确到0.001,它是由四舍五入到0.001而得的,它的准确数,可能是0.0974……,也可能是0.0965…….因此,它与0.001263相加,最多只能得到精确到0.001的和0.098,而不能得到精确到0.000001的和0.098263.
  写成下面的算式:
  
  可以看到,一个加数0.097只精确到千分位,从万分位起的数字都不能确定,因此,所得的和从万分位起的数字也都不能确定,和也最多只能精确到千分位.
  近似数的减法也有类似的情况.
  在通常情况下,近似数相加减,精确度最低的一个已知数精确到哪一位,和或者差也至多只能精确到这一位.近似数的加减一般可按下列法则进行:先确定结果精确到哪一个数位;再把已知数中超过这个数位的数字四舍五入到这个数位的下一位;然后进行计算,并且把算得的数的末一位四舍五入.
  例如,求近似数3.2589、15.4、27.093、1.42、0.3874的和,可以像下面这样来做.
  这里,15.4只精确到十分位,所以和也至多只能精确到十分位.把各个加数四舍五入到百分位相加:
  
  把47.56四舍五入到十分位,得47.6.
  ∴3.2589+15.4+27.093+1.42+0.3874≈47.6.
  (2)近似数的乘除
  看下面的例子,近似数247.65与近似数0.32相乘.
  
  可以看到,0.32中的3与24765相乘得74295,0.32中的2与24765相乘得49530,由于因数0.32只有两个有效数字3、2,第三个数字起不能确定(算式中用"?"表示),所以所得的积里,至少从第三个数字起都不能确定(不确定部分在算式中用"??????"表示).就是说,积也最多只能有两个有效数字.
  近似数的除法也有类似的情况.
  在通常情况下,近似数相乘除,有效数字最少的一个已知数有多少个有效数字,积或商也至多只能有同样多个有效数字.近似数的乘除一般可按下列法则进行:先确定结果有多少个有效数字;再把已知数中有效数字的个数多的,四舍五入到只比结果中需要的个数多一个;然后进行计算,并且把算得的数四舍五入到应有的有效数字的个数.
  例如,上面的例子可以这样来做,因为0.32只有两个有效数字.所以把247.65四舍五入,保留三个有效数字,相乘后结果保留两个有效数字.
  
  ∴ 247.65×0.32≈79.
  近似数乘方、开方的法则和近似数乘除的法则类似.
  教科书中关于近似数的例题、习题,都可用上面所说的法则来计算.
 
版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/wangke/xxshuxue/2021-04-23/61008.html

留言与评论(共有 0 条评论)
   
验证码:

潘少俊衡

| 桂ICP备2023010378号-4

Powered By EmpireCMS

爱享小站

中德益农

谷姐神农

环亚肥料

使用手机软件扫描微信二维码

关注我们可获取更多热点资讯

感谢潘少俊衡友情技术支持