教材中的练习题的设计有些是写明让学生找找规律,有些却没有明确要求,我们应根据练习题的特点,挖掘教材中的练习题所隐藏的功能。
如北师大版教材P51练习四的第1题:
我布置学生先独立完成表格,然后仔细观察。发现有什么规律。没等我说完,小柯就喊出来:“老师,有规律的!”我马上表扬他真细心、爱观察,然后提醒学生要像小柯那样仔细观察、认真思考,看看这道填表题中藏着多少数学知识和数学秘密,可以同桌两人互相交流。
让学生思考交流后,开始全班汇报交流,大部分学生都找到了一个规律:下层书不变,都是27本,上层书一个比一个多2本,一共的本数也是一个比一个多2本。总结完这条规律后,辰辰高高地举起手,激动地叫:“我还发现规律!”我看他那兴奋的样子,就请他回答,他慢慢地说:“我发现上层书的本数都是双数,下层书的本数27本,也是单数。‘一共’这行却是双数,好像单数+单数=双数。”我惊叹他的发现,虽然我也知道其中的规律。但我没想到学生能这么快说出来,我把这个发现写在黑板上,大张旗鼓地表扬他:“你观察得很仔细,也很会动脑筋。真的是这样吗?其他小朋友发现了吗?是不是所有单数加单数都等于双数呢?你们能再找几个这样的例子吗?把你找到的写在本子上,看谁写得多。”每个学生就开始在本子上写出来,等每人写了四、五个这样的例子后,我让他们同桌间进行交流,看是否写得一样。结果发现找到的算式有些不同,有些相同。“我们全班学生写了这么多,看来单数加单数真的等于双数。”我进行了总结(这一环节中,我想渗透数学中的不完全归纳的思想方法)
话音刚落,小旖连忙问:“那单数加双数等干什么数呢?”我又表扬小旖爱提问,而且这个问题提得好,很有价值,然后反问学生:“你们谁能帮助小旖解答这个问题?”啸啸连忙说:“是单数。”我还是让学生多找几个这样的例子验证啸啸是否说对了。学生们又低着头在本子上写着算式,写了七八个左右,发现真的是这样。我又把这个规律写在黑板上。接着有很多学生马上问:“双数加双数等于什么数呢?”我还是让学生先猜测再举例验证。
通过我有意识的提问,却得到了意想不到的收获,培养了学生的思维能力、提问能力,也渗透数学思想方法。
另外,我还常常利用教材中的练习进行另外加工,提高练习的使用价值,如北师大版小学数学一年级下册P50第2题“你能得到几颗★?”我有意识的把题目重新板书在黑板上:
9+8=
26+6=
9+18=
25+7=
9+28=
24+8=
学生计算出得数后,让他们找一找规律,特别是第一组和第二组的题目,请他们按照规律再写几个。学生写完后进行汇报,在汇报第二组时,学生说往下写有23+9=32,22+10=32,21+11=32,20+12=32,往上写有27+5=32,28+4=32,29+3=32,30+2=32,31+1=32。学生说了几个后,我说:“如果老师不想把22+10=32写在下面。你知道为什么吗?”小睿说:“因为我们今天学习的是两位数加一位数的进位加法,而22+10=32是两位数加两位数,所以老师就不想写了。”我佩服孩子能说到我的心里,这说明学生已经明白这节课的内容了,接着我对本节进行了小结。
版权声明
本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/wangke/xxshuxue/2021-04-24/62265.html