师:同学们,学校将举行文艺汇演。舞蹈队老师一方面做好舞蹈的编排,另一方面还考虑服装的搭配。她选择一套服装:上衣与裙子(多媒体出示),你们猜一猜这套服装要用多少钱?
生:我想大约要80元吧!
生:我认为一件上衣大约55元,一条裙子大约30元,那么一套大约85元吧?
师:猜得真好,你们猜得是否准确?请大家听一听舞蹈老师怎么说:(多媒体出示:舞蹈教师说:“一件上衣55元,一条裙子是35元。”)
师:那么,舞蹈队有40人,每人要买一套,请大家帮她算一算,要用多少钱?(学生独立思考并进行计算,然后汇报交流。)
生:我先算出一套服装的价格,再计算40套的价格,即(55+35)x40=3600(元)。
生:我是先分别计算出40件上衣和40条裙子的价格,然后把它们加起来计算出总价。55×40+35×40=3600(元)。
师:(引导学生观察这两个算式)你们发现了什么?
生:两个算式的得数相同。
生:不管是先求一套服装的价格,还是先分别求出40件上衣和40条裙子的价格,最后求得的40套服装的价格都是相同的。
生:它们的得数相同,也可以用等号连接这两个算式。即(55+35)×40=55×40+35×40。
师:仔细观察一下这个等式左右两边的特征,你能不能举出这样的例子呢?(要求学生列举后算出两个算式的得数,看计算结果是否相等,然后指名汇报。)
生:(18+32)×30=18×30+32×30。
生:(15+3)×4=15×4+3×4。
生:(20×4)×5=20×5/4×5。
生:我发现最后一个例子中的算式与前面列举的不一样。这个例子左边的算式是三个数连乘,而其他算式的左边是两个数的和乘一个数,并且这个算式左右两边得数不能相等。
师:讲得好。大家可以通过计算进行验证,左右两边是否相等。
师:刚才列举的这些算式都有些什么共同的特征呢?
生:我发现它们左边的算式都有一个小括号。
生:我发现小括号里的是加法,求两个数的和。
生:我发现左边的算式是两个数的和乘一个数,右边的算式都是求两个积的和。
师:谁能用字母或符号表示出来?
生:可以用(a+b)xc=a×c+b×c。
生:还可以用(□十△)×○=□x○十△x○。
师:这就是我们这节课所学习的内容,谁能把它概括成一句话。
生:两个数的和乘一个数等于和里面的每个数分别去乘这个数。
生:两个数的和同一个数相乘,等于把两个加数分别用这个数相乘,再把两个数相加:
师:这个规律谁能给取个名字?
生:乘法分配律。
反思:
《数学课程标准》明确指出:“数学教学,要紧紧联系学生的生活实际,从学生的生活经验和已有的知识出发,使学生初步感受数学与日常生活密切联系。”“数学学习的内容应当是现实的、有意义的、富有挑战的。”为此,在教学时我们要为学生学习数学提供使流、探究以及运用的机会,体验学习数学的价值。
一、贴近生活——学习现实的数学
数学教学应重视创设问题情境,加强数学与学生生活、社会现实的联系,将数学与学生熟悉或感兴趣的问题有机地融合起来,让学生真切地感受到他们所学的数学与生活密切相关。如本节课教师在引入新课时,创设购买服装的生活情境,并要求学生帮助教师算一算,要用多少钱,从而使数学问题生活化,生活问题数学化,使学生体会到学习数学的亲切感与数学的价值。
二、主动建构——学习有意义的数学
建构主义教学论把“通过学生自己的经验主动建构”看成是教学的“灵魂”,对学生来说,小学数学知识并不都是“新知识”,不少内容是“旧知识”。他们在生活中已经有许多数学知识的体验,学校的数学学习是他们生活中有关数学经验的总结与升华。每一个学生都能从自身的数学经验出发,与教材内容发生交互作用,建构他们自己的数学知识。鉴于学生并不是一张“白纸”,教学时,我们要充分利用他们已有的学习、生活经验促使其主动建构。在引出 “(55+35)×40=55x40+35×40”这个特殊的等式时,教师引导学生观察特征,写一个和它类似的等式,在反馈中,教师把学生所举的等式写下来,让学生观察、思考,然后交流、分析、探讨,感悟到等号左、右两边算式各自的特点以及它们的联系,探究其内在规律,概括出乘法分配律。在整个教学过程中,教师不是把规律直接呈现在学生面前,而是让学生通过自主探索去感悟、去发现、去获取,并在主动建构中学习新知。
版权声明
本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/wangke/xxshuxue/2021-04-23/58324.html