一、教学目标
1.使学生学会借助直观图,利用集合的思想方法解决简单的实际问题。
2.通过活动,使学生掌握解决重合问题的一些基本策略,体验解决问题策略的多样性。
3.丰富学生对直观图的认识,发展形象思维。
二、教学重点
初步学会利用交集的含义解决简单的实际问题。
三、教学难点
用图示的方法感受到交集部分。
四、教具准备
多媒体课件。
五、教学过程
(一)生活导入
1.看电影:两位妈妈和两位女儿一同去看电影,可是她们只买了3张票,便顺利地进了电影院,这是为什么?(外婆、妈妈、女儿)
2.小明排队:小明排队去做操,从前数起小明排第3,从后数起小明排第3,你猜这队小朋友一共有几人?
教师引导学生:你能用你喜欢的方法解释一下吗?(让学生用画图来表示解释)
【生板书画画:○○●○○】
同学聪明活泼、思维活跃,非常喜欢发言,老师很高兴能和你们成为朋友,今天我们就一起上一堂数学活动课—-数学广角。
(二)温故知新
1.森林运动会要开始了,我们来看看小动物们组队参加篮球赛和足球赛的情况。
出示“报名表”:
(1)仔细观察这个表格,你们能发现哪些数学信息?同桌互相说说。
参加篮球赛的有几种动物?参加足球赛的呢?
(2)根据这些数学信息,可以提出什么问题?
学生提问:参加篮球赛和参加足球赛的一共有几种动物?
(3)谁能解决这个问题: 17人、16人、15人、14人。
2.现在有几种不同的答案,那么到底参加篮球赛和参加足球赛的一共有几种动物?
为了解决这个问题,我们组织一个画图大赛,先画出你喜欢的图案,将表格中参加篮球赛、足球赛的动物写在画好的图案里。注意:怎样写才能使大家在你设计的图中一眼就能看出哪些是参加篮球赛、哪些是足球赛的,哪些是既参加篮球赛又足球赛的呢?看看哪个小组设计的图既简单又科学。
(1)小组合作,设计出多种图案。
(2)学生上台展示设计作品,其余同学当小评委。
(3)把展示的作品放在一起,你最喜欢哪一种,为什么?
3.老师也设计了一幅图案,你们也帮老师评一评好吗?【课件】
(1)课件出示: 篮球赛 足球赛
(2)对老师的设计有什么看法吗?
(3)老师根据你们的建议进行了修改,课件演示两集合相交的过程。
4.观察图,看图抢答:图中告诉你什么信息?【课件】
(1)参加篮球赛的有8种。
(2)参加足球赛的有9种。
(3)3种动物是既参加篮球赛又参加足球赛的。
(4)只参加篮球赛的有5种。
(5)只参加足球赛的有6种。
(6)参加篮球赛的和参加足球赛的有14种。列式表示:8+9-3=14(种)
① 追问:为什么减去3?
(因为这3种既参加篮球赛又参加足球赛,是重复的,因此要去掉。)
② 还可以怎样解答?说说是怎样想的?
5+3+6=14(种)
(只参加篮球赛的5人和只参加足球赛的6人与既参加篮球赛又参加足球赛的3人,解决的是问题。)
9-3+8=14(种)
(9-3表示只参加足球赛,再加上参加篮球赛的8人,也可以得到问题。)
教师介绍:这个图是一个叫韦恩的人创造的。
5.集合图与表格比较,有什么好处?
从图中能很清楚地看出重复的部分和其它信息。
(三)巩固练习
1.同学们都很爱动脑筋,自己设计了解决问题的方法,运用这些数学思想方法可以解决生活中的许多实际问题。
(1)春天到了,阳光明媚,动物王国准备举行运动会,看哪些动物来参加呢?认识它们吗?
(2)学生说说动物名称。
课件出示比赛项目:游泳、飞行。
(3)小动物们可以参加什么项目呢?学生讨论、反馈。
(4)原来这些动物有这么多本领,那就请你们来帮小动物报名吧。(把动物序号填在课本上)
(5)汇报:说说哪些动物会飞,能参加飞翔比赛,哪些动物会游泳,能参加游泳比赛。学生边说边动画演示。
点到天鹅、海鸥时,说说它们应参加什么项目,为什么?要放在哪儿?这说明两个圆圈交叉的中间部分表示什么?
动画演示:既会飞又会游泳的。
2.动画6【P110——2】文具店。
同学们帮助小动物们解决了运动会报名的问题,再接受一次挑战好吗?
(1)课件出示:文具店。
课件演示:文具店昨天、今天批发文具的情况。
(2)观察图,发现了什么?(两天都批发了钢笔、尺、练习本)
昨天进的货有:(略),今天进的货有(略)
(3)两天共批发多少种货?
学生列式:5+5-3=7 5×2-3=7 5-3+5=7
(4)结合动画验证算式。
3.同学们去春游,带面包的有26人,带水果的有23人,既带面包又带水果的有48人。参加春游的同学一共有多少人?
(2)根据线段图学生列式:
26-10+23 23-10+26 26+23-10
(3)说说怎样想的?
4.动画11(集合图)
(1)看图说图意
(2)根据动画提供的素材学生列式
小结:我们在解决问题时,很好的利用了集合圈或者线段图帮助我们分析问题。
(四)归纳总结
通过这节课的学习,你有什么收获?
(五)机动练习
三年级有20个同学参加竞赛,其中参加数学竞赛的有15人,参加作文竞赛的有13人。(1)既参加数学竞赛又参加作文竞赛的有几人?(2)只参加数学竞赛的有几人?(3)只参加作文竞赛的有几人?
版权声明
本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/wangke/xxshuxue/2021-04-22/56067.html