首页 > 小学网课 > 初中数学

初中数学知识点总结:排列组合知识点讲解

admin 初中数学 2021-04-24 17:51:32 初中   数学   知识点   总结   排列组合   讲解   今天   小编   就为

 

  今天小编就为大家精心整理了一篇有关初中数学知识点总结:排列组合知识点讲解的相关内容,以供大家阅读,更多信息请关注爱享小站-学习网!     排列的定义及其计算公式     排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算。     定义的前提条件是m≦n,m与n均为自然数。     ①从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。     ②从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。     ③用具体的例子来理解上面的定义:4种颜色按不同颜色,进行排列,有多少种排列方法,如果是6种颜色呢。从6种颜色中取出4种进行排列呢。     解:A(4,4)=4x(4-1)x(4-2)x(4-3)x(4-4+1)=4x1x2x3x1=24。     A(6,6)=6x5x4x3x2x1=720。     A(6,4)=6!/(6-4)!=(6x5x4x3x2x1)/2=360。
用例子理解排列组合及基本公式如何计算   [计算公式]     排列用符号A(n,m)表示,m≦n。     计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!     此外规定0!=1,n!表示n(n-1)(n-2)…1     例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。 用例子理解排列组合及基本公式如何计算       组合的定义及其计算公式     组合的定义有两种。定义的前提条件是m≦n。     ①从n个不同元素中,任取m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。     ②从n个不同元素中,取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。     ③用例子来理解定义:从4种颜色中,取出2种颜色,能形成多少种组合。     解:C(4,2)=A(4,2)/2!={[4x(4-1)x(4-2)x(4-3)x(4-4+1)]/[2x(2-1)x(2-2+1)]}/[2x(2-1)x(2-2+1)]=[(4x3x2x1)/2]/2=6。  用例子理解排列组合及基本公式如何计算   [计算公式]     组合用符号C(n,m)表示,m≦n。     公式是:C(n,m)=A(n,m)/m!或C(n,m)=C(n,n-m)。     例如:C(5,2)=A(5,2)/[2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。   用例子理解排列组合及基本公式如何计算       其它排列与组合公式     其它排列与组合有三种。     ①从n个元素中取出m个元素的循环排列数=A(n,m)/m!=n!/m!(n-m)!。     ②n个元素被分成K类,每类的个数分别是n1,n2,…,nk这n个元素的全排列数为n!/(n1!xn2!x…xnk!)。     ③k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。   用例子理解排列组合及基本公式如何计算       符号说明     C-代表-Combination--组合数     A-代表-Arrangement--排列数(在旧教材为P-permutation--排列)     N-代表-元素的总个数     M-代表-参与选择的元素个数     !-代表-阶乘     基本公式整理     只要记住下面公式,就会计算排列组合:(在列式中n为下标,m为上标)     排列:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!     组合:C(n,m)=A(n,m)/A(m,m)=A(n,m)/m!                C(n,m)=C(n,n-m)=n!/m!(n,m)!     例如:     A(4,2)=4!/2!=4x3=12     C(4,2)=4!/(2!x2!)=(4x3x2)/(2x2)=6 用例子理解排列组合及基本公式如何计算   今天的内容就介绍到这里了。
版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/wangke/chzshuxue/2021-04-24/63581.html

留言与评论(共有 0 条评论)
   
验证码:

潘少俊衡

| 桂ICP备2023010378号-4

Powered By EmpireCMS

爱享小站

中德益农

谷姐神农

环亚肥料

使用手机软件扫描微信二维码

关注我们可获取更多热点资讯

感谢潘少俊衡友情技术支持