今天小编就为大家精心整理了一篇有关学习计划的相关内容,以供大家阅读,更多信息请关注爱享小站-学习网! 【主要内容】 本单元是在学习了平方根和算术平方根的意义的基础上,引入一个符号“”.主要内容有:(1)二次根式的有关概念,如:二次根式定义、最简二次根式、同类二次根式等;(2)二次根式的性质;(3)二次根式的运算,如:二次根式的乘除法、二次根式的加减法等. 【要点归纳】 1.二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义. 2.二次根式的性质: ① ②
③
④
3.二次根式的运算 二次根式的运算主要是研究二次根式的乘除和加减. (1)二次根式的加减: 需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。 注意:对于二次根式的加减,关键是合并同类二次根式,通常是先化成最简二次根式,再把同类二次根式合并.但在化简二次根式时,二次根式的被开方数应不含分母,不含能开得尽的因数. (2)二次根式的乘法: (3)二次根式的除法: 注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式. (4)二次根式的混合运算: 先乘方(或开方),再乘除,最后加减,有括号的先算括号里面的;能利用运算律或乘法公式进行运算的,可适当改变运算顺序进行简便运算. 注意:进行根式运算时,要正确运用运算法则和乘法公式,分析题目特点,掌握方法与技巧,以便使运算过程简便.二次根式运算结果应尽可能化简.另外,根式的分数必须写成假分数或真分数,不能写成带分数.例如不能写成. (5)有理化因式: 一般常见的互为有理化因式有如下几类: ①与; ②与;
③与; ④与.
说明:利用有理化因式的特点可以将分母有理化. 【难点指导】 1、如果是二次根式,则一定有;当时,必有; 2、当时,表示的算术平方根,因此有;反过来,也可以将一个非负数写成的形式; 3、表示的算术平方根,因此有,可以是任意实数; 4、区别和的不同 中的可以取任意实数,中的只能是一个非负数,否则无意义. 5、简化二次根式的被开方数,主要有两个途径: (1)因式的内移:因式内移时,若,则将负号留在根号外.即: (2)因式外移时,若被开数中字母取值范围未指明时,则要进行讨论.即:
6、二次根式的比较: (1)若,则有;(2)若,则有. 说明:一般情况下,可将根号外的因式都移到根号里面去以后再比较大小. 今天的内容就介绍到这里了。
版权声明
本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/wangke/chzshuxue/2021-04-24/63604.html