今天小编为大家精心整理了一篇有关数学的相关内容,以供大家阅读,更多信息请关注爱享小站-学习网! 口诀1 人说几何很困难,难点就在辅助线。 辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 图中有角平分线,可向两边作垂线。 角平分线平行线,等腰三角形来添。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线加一倍。 梯形里面作高线,平移一腰试试看。 等积式子比例换,寻找相似很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,弦高公式是关键。 半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径连。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 要想作个外接圆,各边作出中垂线。 还要作个内切圆,内角平分线梦园。 如果遇到相交圆,不要忘作公共弦。 若是添上连心线,切点肯定在上面。 辅助线,是虚线,画图注意勿改变。 假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。 解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。 分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。 口诀2 学习几何体会深,成败也许一线牵。 分散条件要集中,常要添加辅助线。 畏惧心理不要有,其次要把观念变。 熟能生巧有规律,真知灼见靠实践。 图中已知有中线,倍长中线把线连。 旋转构造全等形,等线段角可代换。 多条中线连中点,便可得到中位线。 倘若知角平分线,既可两边作垂线。 也可沿线去翻折,全等图形立呈现。 角分线若加垂线,等腰三角形可见。 角分线加平行线,等线段角位置变。 已知线段中垂线,连接两端等线段。 辅助线必画虚线,便与原图联系看。 今天的内容就介绍到这里了。
版权声明
本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/wangke/chzshuxue/2021-04-24/63565.html