今天小编为大家精心整理了一篇有关初中数学教案之三角形三条边的关系的相关内容,以供大家阅读,更多信息请关注爱享小站-学习网! 三角形三条边的关系 1、教材分析 (1)知识结构 (2)重点、难点分析 本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;熟练灵活地运用三角形的两边之和大于第三边,是数学严谨性的一个体现;同时也有助于提高学生全面思考数学问题的能力;它还将在以后的学习中起着重要作用. 本节内容的难点一是三角形按边分类,很多学生常常把等腰三角形与等边三角形看成独立的两类,而在解题中产生错误.二是利用三角形三边之间的关系解题,在学习和应用这个定理时,“两边之和大于第三边”指的是“任何两边的和”都“大于第三边”而学生的错误就在于以偏概全;分类讨论在解题中也是学生感到困难的一个地方. 2、教法建议 没有学生参与的教学是不成功的教学,教师为了充分调动主体参与,必须在为学生提供必要的背景知识的前提下,与学生一道探索定理在结构上、应用上留给我们的启示.具体说明如下: (1)强化能力 新课引入,先让学生阅读教材第一部分,然后通过回答教师设计的几个问题,使学生明确对三角形按边分类,做到不重不漏,其中等腰三角形包括等边三角形,反过来等边三角形是等腰三角形的一种特例. 通过阅读,使学生初步认识数学概念的含义,发现疑难;理解领会数学语言(文字语言、符号语言、图形语言),促进数学语言内化,从而提高学生的数学语言水平、自学能力及交流能力 (2)主动获取 在得出三角形三条边关系定理过程中,针对基础比较好的学生,让学生考虑回忆第 一册第一章中学过的这条公理并给出证明,在这个基础上,让学生把定理的内容叙述出来.(3)激荡思维 由定理获得了:判断三条线段构成一个三角形的一种方法,除了这一种方法外,是否还有其它的判断方法呢?从而激荡起学生思维浪花:方法是什么呢?学生最初可能很快得到“推论”,此时瓜熟蒂落,顺理成章地引出教材中的推论.在此基础上,让学生通过讨论,简化上述两种方法,由此得到下面两种方法.这里,学生若感到困难,教师可适当做提示.方法3:已知线段,(),若第三条线段c满足-c则线段,,c可组成一个三角形.教学中采用这种教学方法可培养学生分析问题探索问题的能力,提高学生对数学知识结构完整性的认识. (4)加深理解 进行必要的例题讲解和适当的解题练习,以达到熟练地运用定理及推论.从过程中让学生体味到数学造化之神奇.也可适当指出,此定理及推论不仅提供了判定三条线段是否构成三角形的根据,也为今后解决字母取值范围问题提供了有利的依据. 整个教学过程,是学生主动参与,教师及时点拨,学生积极探索的过程,教学过程跌宕起伏,问题逐步深化,学生思维逐步扩展,使学生在愉快、主动中得到发展. 教学目标: (1)掌握三角形三边关系定理及其推论,会根据三条线段的长度判断他们能否构成三角形; (2)弄清三角形按边的相等关系的分类; (3)通过三角形的分类学习,使学生知道分类的基本思想,提高学生归纳概括的能力; (4)通过三角形三边关系定理的学习,培养学生转化的能力; (5)通过等边三角形是等腰三角形的特例,渗透一般与特殊的辩证关系. 教学重点:三角形三边关系定理及推论 教学难点:三角形按边分类及利用三角形三边关系解题 教学用具:直尺、微机 教学方法:谈话、探究式 教学过程: 1、阅读新课,回答问题 先让学生阅读教材的第一部分,然后回答下列问题: (1)这一部分教材中的数学概念有哪些?(指出来并给予解释) (2)等腰三角形与等边三角形有什么关系? 估计有的学生可能把等腰三角形和等边三角形看成独立的两类. (3)写出三角形按边的相等关系分类的情况. 教师最后板书给出. (要求学生之间可互相补充,从一开始就鼓励双边交流与多边交流) 2、发现并推导出三边关系定理 问题1:用长度为4cm、10cm、16cm的线绳(课前准备好的)能否搭建一个三角形?(让学生动手操作) 问题2:你能解释上述结果的原因吗? 今天的内容就介绍到这里了。
版权声明
本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/wangke/chzshuxue/2021-04-24/63427.html