初中数学学习方法:一元一次方程
初中数学学习方法:一元一次方程
1、等式与等量:用“=”号连接而成的式子叫等式。注意:“等量就能代入”。 2、等式的性质: 等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。 3、方程:含未知数的等式,叫方程。 4、方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”。 5、移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1。 6、一元一次方程: 只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。 7、一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0)。 8、一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0)。 9、一元一次方程解法的一般步骤: 整理方程 — 去分母— 去括号 — 移项 — 合并同类项 — 系数化为1 —(检验方程的解)。 10.列一元一次方程解应用题: (1)读题分析法:多用于“和,差,倍,分问题”。 仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套等”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。 (2)画图分析法:多用于“行程问题” 利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。 11、列方程解应用题的常用公式: (1)行程问题:距离=速度·时间 (2)工程问题:工作量=工效·工时 (3)比率问题:部分=全体·比率 (4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; (5)商品价格问题:售价=定价·折;利润=售价-成本, ; (6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a, S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥= πR2h。
版权声明
本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/wangke/chzshuxue/2021-04-24/63062.html