初中数学学习方法:代数初步知识
初中数学学习方法:代数初步知识
1、代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式。 注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。 2、列代数式的几个注意事项: (1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写。 (2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号。 (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a。 (4)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的3/a形式; (5)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a . 3、几个重要的代数式: (1)a与b的平方差是:a2-b2; a与b差的平方是:(a-b)2。 (2)若a、b、c是正整数,则两位整数是:10a+b;则三位整数是:100a+10b+c。 (3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1。 (4)若b>0,则正数是:a2+b ,负数是:-a2-b,非负数是:b2 ,非正数是:-b2 。 二、有理数 1、有理数: (1)凡能写成b/a(a、b都是整数且a≠0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。 (注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数) (2)有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。 (3)自然数是指0和正整数;a>0,则a是正数;a<0,则a是负数;a≥0 ,则a是正数或0(即a是非负数);a≤0,则a是负数或0(即a是非正数)。 2、数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3、相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。 (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0时,则a+b=0;即a、b互为相反数。 4、绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。 (注意:绝对值的意义是数轴上表示某数的点离开原点的距离)。 (2)绝对值可表示为|a|。 (3)|a|是重要的非负数,即|a|≥0。(注意:|a|·|b|=|a·b|)。 5、有理数比大小: (1)正数的绝对值越大,这个数越大; (2)正数永远比0大,负数永远比0小; (3)正数大于一切负数; (4)两个负数比大小,绝对值大的反而小; (5)数轴上的两个数,右边的数总比左边的数大; (6)大数-小数 > 0,小数-大数< 0. 6、互为倒数: 乘积为1的两个数互为倒数。 (注意:0没有倒数;若 a、b≠0,那么a/b的倒数是b/a;倒数是本身的数是±1;若ab=1,则a、b互为倒数;若ab=-1,则a、b互为负倒数。 7、有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加。 (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。 (3)一个数与0相加,仍得这个数。 8、有理数加法的运算律: (1)加法的交换律:a+b=b+a 。 (2)加法的结合律:(a+b)+c=a+(b+c)。 9、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。 10、有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘。 (2)任何数同零相乘都得零。 (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。 11、有理数乘法的运算律: (1)乘法的交换律:ab=ba。 (2)乘法的结合律:(ab)c=a(bc)。 (3)乘法的分配律:a(b+c)=ab+ac。 12、有理数除法法则:除以一个数等于乘以这个数的倒数。(注意:零不能做除数) 13、有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数。注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n, 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n 。 14、乘方的定义: (1)求相同因式积的运算,叫做乘方。 (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂。 (3)a2是重要的非负数,即a2≥0;若a2+|b|=0 ,则a=0,b=0。 (4)底数的小数点移动一位,平方数的小数点移动二位。 15、科学记数法: 把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。 16、近似数的精确位: 一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。 17、有效数字: 从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。 18、混合运算法则: 先乘方,后乘除,最后加减。注意:怎样算简单,怎样算准确,是数学计算的最重要的原则。 19、特殊值法: 是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明。
版权声明
本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/wangke/chzshuxue/2021-04-24/63056.html