首页 > 系统 > Linux教程

ubuntu安装显卡驱动和cuda教程

目录

写在最前面:

最新的版本不一定是好的,合适的才是最好的,建议cuda10.1+cudnn7.6.5

1. 卸载原始的驱动

#查看安装的包
apt list --installed|grep -i nvidia
#卸载包
apt-get purge nvidia*

2. 下载新显卡驱动

https://www.nvidia.cn/Download/index.aspx?lang=cn

在这里插入图片描述

复制下载链接,在系统中用wget下载

#下载
wget https://cn.download.nvidia.cn/tesla/470.57.02/NVIDIA-Linux-x86_64-470.57.02.run
#安装
sudo sh NVIDIA-Linux-x86_64-470.57.02.run

2.1 安装显卡驱动

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3 安装cuda

官网链接

选择cuda版本,要和驱动的cuda版本一致

wget https://developer.nvidia.com/compute/cuda/10.0/Prod/local_installers/cuda_10.0.130_410.48_linux
sudo sh cuda_10.0.130_410.48_linux

在这里插入图片描述

添加环境变量,将上图中的建议加到.bashrc文件中

Please make sure that

          PATH includes /usr/local/cuda-11.4/bin
          LD_LIBRARY_PATH includes /usr/local/cuda-11.4/lib64, or,
                   add /usr/local/cuda-11.4/lib64 to /etc/ld.so.conf and run ldconfig as root
vim ~/.bashrc
#添加路径
export PATH=$PATH:/usr/local/cuda-11.4/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.4/lib64
#使环境生效
source ~/.bashrc

查看nvcc -V

在这里插入图片描述

cudatoolkit

sudo apt install nvidia-cuda-toolkit

4. 安装cudnn

安装cudnn

https://developer.nvidia.com/rdp/cudnn-download

在这里插入图片描述

wget https://developer.download.nvidia.cn/compute/machine-learning/cudnn/secure/8.2.2/11.4_07062021/Ubuntu18_04-x64/libcudnn8_8.2.2.26-1%2Bcuda11.4_amd64.deb?aJLLhXbzztwE4iizwf68uvg1s73kk4KKBGqv6B0UkO9HhnOhOsGHlyo1Br5CWc0nAIJLmc6C5SkLYqbdQqdZBoAdcVQgBTmWKXJXigR7roUeXd0VIKUuM57UKWMp3BUQgr6SQ4kkGnRRtUJ5mJt
dpkg -i libcudnn8_8.2.2.26-1+cuda11.4_amd64.deb

在这里插入图片描述

5. 安装anaconda

wget https://mirror.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2021.05-Linux-x86_64.sh

在这里插入图片描述

添加环境变量

vim ~/.bashrc
export PATH="/usr/local/anaconda3/bin:$PATH"
source ~/.bashrc

在这里插入图片描述

替换anaconda源

"""更换清华conda源"""
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

查看tensorflow版本

在这里插入图片描述

pip install tensorflow-gpu==2.2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

测试安装的tensorflow

import tensorflow as tf
print(tf.test.is_gpu_available())
tf.__version__
tf.__path__

在这里插入图片描述

上述报错原因是cuda版本太高了,要选择10.1版本

在这里插入图片描述

上述报错原因是cudnn版本太高了,要选择7.6.5版本

默认Python2调整为Python3

apt-get install python3.7
sudo update-alternatives --install /usr/bin/python python /usr/bin/python2 100
sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 150
sudo apt install python3-pip

以上就是ubuntu安装显卡驱动和cuda教程的详细内容,更多关于ubuntu安装显卡驱动和cuda的资料请关注潘少俊衡其它相关文章!

版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。
本文地址:/jtjc/Linux/105346.html

留言与评论(共有 0 条评论)
   
验证码:

潘少俊衡

| 桂ICP备2023010378号-4

Powered By EmpireCMS

爱享小站

中德益农

谷姐神农

环亚肥料

使用手机软件扫描微信二维码

关注我们可获取更多热点资讯

感谢潘少俊衡友情技术支持